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4. Metacommunities and Assembly Rules

Metacommunity concept — Spatially structured communities

Dynamics influenced by:

e regional species pools

colonization (dispersal)

disturbance regimes

local extinctions

local species interactions



Origins of the metacommunity concept -

Hutchinson, G. E. 1941. Ecological aspects of succession in natural populations. American
Naturalist 75:406-418.

Hutchinson, G. E. 1948. Circular causal systems in ecology. Annals of the New York Academy
of Science 50:221-246.

Hutchinson, G. E. 1951. Copepodology for the ornithologist. Ecology 32:571-577.

Hutchinson, G. E. 1953. The concept of pattern in ecology. Proceedings of the Academy of
Natural Sciences of Philadelphia 104:1-12.

Hutchinson, G. E. 1961. The paradox of the plankton. American Naturalist 95:137-145.



Metapopulation Paradigm
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for biological control. Bulletin of the Entomological Society of America, 15, 237-240.

Levin, S. A. 1974. Dispersion and population interactions. American Naturalist 108:207-228.

Pulliam, H.R. 1988. Sources, sinks, and population regulation. American Naturalist, 132, 652—
661.

Hanski, 1. 1998. Metapopulation Ecology. Oxford University Press, Oxford, UK.
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and the fraction of patches vacant, 1-p
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metapopulation — patch extinctions, patch recolonizations

Colonization rate, m, is proportional to fraction of patches occupied, p, and the fraction
of patches vacant, 1-p

Assume all local subpopulations (subunits within patches) have the same constant
extinction probability, e

dp/dt = mp(1-p) —ep
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heterogeneity for biological control. Bulletin of the Entomological Society of America, 15,
237-240.

metapopulation — patch extinctions, patch recolonizations

Colonization rate, m, is proportional to fraction of patches occupied, p, and the fraction
of patches vacant, 1-p

Assume all local subpopulations (on patches) have the same constant extinction
probability, e
dp/dt = mp(1-p) —ep
FAN
At equilibrium, p=1-e/m

For p to remain positive, m must be > e



What is the effect of decreasing patch area on extinction rate?
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What is the effect of increasing patch isolation on colonization rate?



What is the effect of decreasing patch area on extinction rate?

e increases

What is the effect of increasing patch isolation on colonization rate?

m decreases



What is the effect of decreasing patch area on extinction rate?

e increases

What is the effect of increasing patch isolation on colonization rate?

m decreases

6=1—e/m

(p is fraction of patches occupied)



Pulliam, H.R. (1988). Sources, sinks, and population regulation. American Naturalist, 132, 652—
661.

B I D E model of metapopulation dynamics

N,,=N,+B+1-D—E

N, is initial population size
B is total births

| is net immigration

D is total deaths

E is net emigration



BIDE model metapopulation subunits

B=ij forj=1tom
D=3%d forj=1tom
=31 forj=1tom
E=2¢ forj=1tom
=3 0y fork=0tom
e =2 e fork=0tom

ey = li foralljz0



Within this framework, one can define:

a source subunit, or patch  b;>d; and e >i

a sink subunit, or patch  b,<d;, and g <i



Within this framework, one can define:
a source subunit, or patch  b;>d; and e >i

J J

a sink subunit, or patch  b,<d;, and g <i

Sources are “net exporters”
Sinks are “net importers”
Sinks depend on the status of sources (e.g., donor control)

The model can be made more complex by making i, and e, density dependent
based on the donating or receiving subunit’s abundance (n; or n,)

or by having fixed thresholds for emigration.



good habitat Cik

poor habitat

source

sink



Vol. 148, No. 6 The American Naturalist December 1996

CATASTROPHIC EXTINCTION OF POPULATION SOURCES
IN A BUTTERFLY METAPOPULATION

Curis D. THoMAs,""* MicHAEL C. SINGER,2 AND DAvID A. BOUGHTON?

55
o

D

3

1985

B clear-cut
outcrop

wigwet 190

Fi6. 1.—Distribution of Euphydryas editha population sources (clear-cut habitat) and pseu-
dosinks (outcrops) at Generals’ Highway. The 1985 distribution of eggs/young larvae is
shown. Four additional outcrops are located 8.5-15 km southeast of the southernmost site
shown. Thick lines indicate roads.



Euphydra editha, checkerspot butterfly in Sequoia National Forest, California

Rocky outcrops with historic host plants for butterfly = pseudosinks
(With deforested patches on the landscape, breeding success was poor in rocky
outcrops under enhanced immigration rates)

Deforested “clear cuts” with novel host plant (Collinsia) for butterfly = sources

After a severe summer frost, Collinsia were killed, but butterflies on rocky
outcrops did not go extinct, they persisted on their native host plants (Pedicularis
semibarbata and Castilleja disticha).
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Degree of fragmentation (patch size holding total area constant) had no effect on:

soil properties, rate of plant succession, community species richness & diversity

But it did affect:

e population densities of several plant and animal species (greater on larger patches)

e persistence of clonal plants

e persistence of individual rodents (based on mark-recapture study)

e rodent age structure (smaller patches dominated by young, non-reproductive individuals
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Ecology, 79(6), 1998, pp. 2032-2040
© 1998 by the Ecological Society of America

RAIN FOREST FRAGMENTATION AND THE DYNAMICS OF
AMAZONIAN TREE COMMUNITIES

WirriaMm E LAurRANCE. LEANDRO V. FERREIRA, JUuDY M. RANKIN-DE MERONA.! AND SusaN G. LAURANCE

Manaus

Fic. 1. Study area in central Amazonia, showing locations of forest fragments and controls (shaded blocks) used in the
study. Stippled areas are cattle pastures or regrowth forest, while unstippled areas are rain forest. Thick, solid lines are roads.



Annual rate (%)

10+

Mortality
] Damage
Turnover

lﬂl %ﬂ@ 1S

Controls
Fragment area (ha)

NNNNNNNRNNNNN

60-100  101-500 >500
Distance to edge (m)



(95

S,
iy

o

ve

Brazos R




Pomoxis annularis

Dorosoma petenense
Lepomis cyanellus

Ictalurus furcatus

During floods, there is exchange of fishes between river and oxbow lakes.

Menidia beryllina

Lepomis macrochirus
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Correspondence Analysis (CA) using seine net CPUE data for fishes



Some species are more abundant in the river channel following floods.

Correlation between monthly peak discharge and CPUE in channel
with a time lag of 1 month:

» White crappie, Pomoxis annularis +0.67

Flood connections result in exportation of fish to the river channel.

source-sink metapopulation dynamics



Flood connections also result in entry of fish abundant in the river
channel into oxbow lakes where they perish within a few months.

Red shiner, Cyprinella lutrensis

Bullhead minnow, Pimephales vigilax




Exploration of the Metacommunity Concept—

Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F.
Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez.
2004. The metacommunity concept: a framework for multi-scale community
ecology. Ecology Letters 7:601-613.

Holyoak, M. A. Leibold, and R. D. Holt (editors). 2005. Metacommunities: spatial
dynamics and ecological communities. University of Chicago Press, Chicago.



Leibold et al. 2004. Ecology Letters 7:601-613.

Table 1 Terms used to define scales of organization and population dynamics in metacommunities

Term

Definigon

Ecological scales of organization
Populagon
Metapopulaton
Community
Metacommunity

Descriptions of space
Patch

Microsite
Locality
Region

Types of dynamics
Spatial dynamics

Mass effect
Rescue effect

Source-sink effects

Colonization

All individuals of a single species within a habitat patch

A set of local populations of a single species that are linked by dispersal (after Gilpin and Hanski 1991)
The individuals of all species that potenaally interact within a single patch or local area of habitat

A set of local communities that are linked by dispersal of multaple interacting species (Wilson 1992)

A discrete area of habitat. Patches have variously been defined as microsites or localides
(Levins 1969; Tilman 1994; Amarasckare & Nisbet 2001; Mouquet & Loreau 2002). In this paper we
use the term analogously to localities, which are capable of holding populatons or communities

A site that is capable of holding a single individual. Microsites are nested within localities

An area of habitat encompassing multiple microsites and capable of holding a local community

A large area of habitat containing multiple localities and capable of supporting a metacommunity. This
corresponds to the ‘mesoscale’ of Holt (1993)

Any mechanism by which the distributon or movement of individuals across space influences local
or regional population dynamics. Different types of dynamics are discussed by Holyoak & Ray (1999)

A mechanisms for spatial dynamics in which there is net flow of individuals created by differences
in population size (or density) in different patches (Shmida & Wilson 1985)

A mechanism for spatial dynamics in which there is the prevention of local extinction of species
by immigration (Brown & Kodric-Brown 1977)

A mechanism for spatal dynamics in which there is the enhancement of local populations by
immigration in ‘sink’ localities due to migration of individuals from other localities where emigration
results in lowered populations

A mechanism for spatial dynamics in which populations become established at sites from which they
were previously absent



Leibold et al. 2004. Ecology Letters 7:601-613.

Term

Definiton

Dispersal
Stochastic extinctions

Deterministic extinctions

Metacommunity dynamics

Movement of individuals from a site (emigration) to another (immigration)

A mechanism whereby established local populatons of component species become extinet for reasons
that are independent of the other species present or of deterministic change in patch quality. Among
other possibilities these include stochastic components associated with small populatons and
extinctons due to stochastc environmental changes (Le. disturbances) that can affect large
populatons

A mechanism whereby established local populatons of component species become extinct due
to deterministic aspects of patch quality or in the composition of the local community

The dynamics that arise within metacommunites. Logically, these consist of spatial dynamics,
community dynamics (multispecies interactions or the emergent properties arising from them within
communites), and the interacton of spatial and community dynamics. The term is best avoided
because its use detracts from the dynamical mechanisms

Types of model populaton or community structure

Classic (Levins) metapopulaton

Source-sink system

Mainland-island system

Open community
Closed community

Patch occupancy model

Spaaally explicit model

A group of identical local populations with finite and equal probabiliges of extincton
and recolonizaton — no rescue effects occur

A system with habitat-specific demography such that some patches (source habitats) have a finite
growth rate of greater than unity and produce a net excess of individuals which migrate to sink
patches. Populatons in sink habitats have finite growth rates of less than one and would decline to
extincton in the absence of immigration from sources (based on Holt 1985; Pulliam 1988)

A system with varation in local population size which influences the extinction probability
of populatons. Systems are usually described as consisting of extinction-resistant mainland
populatons and extinction-prone island populations (Boorman and Levitt 1973).

A community which experiences immigration and /or emigration

A community that is isolated, receiving no immigrants and giving out no emigrants

A model in which patches contain either individuals or populatons of one or more species and where
local population sizes are not modelled

A model in which the arrangement of patches or distance between patches can influence patterns
of movement and interaction




Leibold et al. 2004. Ecology Letters 7:601-613.

Patch-dynamics paradigm

(@)

Figure 1 Schematic representation of the four paradigms for metacommunity theory for two competing species with populations A and B.
Arrows connect donor populations with potential colonization sites, shown as large boxes or ovals. Solid arrows indicate higher dispersal than
dashed arrows and either unidirectional movement (single-headed arrows) or bidirectional movement (double-headed arrows). The degree to
which a species is the competitive dominant in a site is shown by the matching of the smaller box or oval (denoting its habitat type niche) with
the site symbol. The four paradigms illustrated are (a) patch-dynamics, (b) species-sorting, (c) mass-effects and (d) neutral. In (a) the patch-
dynamics paradigm is shown with conditions that permit coexistence: a competition-colonization trade-off is illustrated with species A being a
superior competitor but species B being a superior colonist; the third patch is vacant and could become occupied by either species. In
(b) species are separated into spatial niches and dispersal is not sufficient to alter their distribution. In (c) mass effects cause species to be
present in both source and sink habitats; the smaller letters and symbols indicate smaller sized populations. In (d) all species are currently
present in all patches; species would gradually be lost from the region and would be replaced by speciation.



Leibold et al. 2004. Ecology Letters 7:601-613.

Species-sorting paradigm

(b)

Figure 1 Schematic representation of the four paradigms for metacommunity theory for two competing species with populations A and B.
Arrows connect donor populations with potential colonization sites, shown as large boxes or ovals. Solid arrows indicate higher dispersal than
dashed arrows and either unidirectional movement (single-headed arrows) or bidirectional movement (double-headed arrows). The degree to
which a species is the competitive dominant in a site is shown by the matching of the smaller box or oval (denoting its habitat type niche) with
the site symbol. The four paradigms illustrated are (a) patch-dynamics, (b) species-sorting, (c) mass-effects and (d) neutral. In (a) the patch-
dynamics paradigm is shown with conditions that permit coexistence: a competition-colonization trade-off is illustrated with species A being a
superior competitor but species B being a superior colonist; the third patch is vacant and could become occupied by either species. In
(b) species are separated into spatial niches and dispersal is not sufficient to alter their distribution. In (c) mass effects cause species to be
present in both source and sink habitats; the smaller letters and symbols indicate smaller sized populations. In (d) all species are currently
present in all patches; species would gradually be lost from the region and would be replaced by spedation.



Leibold et al. 2004. Ecology Letters 7:601-613.

Mass-effects paradigm

(c)

0

A

Figure 1 Schematic representation of the four paradigms for metacommunity theory for two competing species with populations A and B.
Arrows connect donor populations with potential colonization sites, shown as large boxes or ovals. Solid arrows indicate higher dispersal than
dashed arrows and either unidirectional movement (single-headed arrows) or bidirectional movement (double-headed arrows). The degree to
which a species is the competitive dominant in a site is shown by the matching of the smaller box or oval (denoting its habitat type niche) with
the site symbol. The four paradigms illustrated are (a) patch-dynamics, (b) species-sorting, (c) mass-effects and (d) neutral. In (a) the patch-
dynamics paradigm is shown with conditions that permit coexistence: a competition-colonization trade-off is illustrated with species A being a
superior competitor but species B being a superior colonist; the third patch is vacant and could become occupied by either species. In
(b) species are separated into spatial niches and dispersal is not sufficient to alter their distribution. In (c) mass effects cause species to be
present in both source and sink habitats; the smaller letters and symbols indicate smaller sized populations. In (d) all species are currently
present in all patches; species would gradually be lost from the region and would be replaced by spedation.



Leibold et al. 2004. Ecology Letters 7:601-613.

Neutral paradigm

(d) u
B

A

Figure 1 Schematic representation of the four paradigms for metacommunity theory for two competing species with populations A and B.
Arrows connect donor populations with potential colonization sites, shown as large boxes or ovals. Solid arrows indicate higher dispersal than
dashed arrows and either unidirectional movement (single-headed arrows) or bidirectional movement (double-headed arrows). The degree to
which a species is the competitive dominant in a site is shown by the matching of the smaller box or oval (denoting its habitat type niche) with
the site symbol. The four paradigms illustrated are (a) patch-dynamics, (b) species-sorting, (c) mass-effects and (d) neutral. In (a) the patch-
dynamics paradigm is shown with conditions that permit coexistence: a competition-colonization trade-off is illustrated with species A being a
superior competitor but species B being a superior colonist; the third patch is vacant and could become occupied by either species. In
(b) species are separated into spatial niches and dispersal is not sufficient to alter their distribution. In (c) mass effects cause species to be
present in both source and sink habitats; the smaller letters and symbols indicate smaller sized populations. In (d) all species are currently
present in all patches; species would gradually be lost from the region and would be replaced by speciation.



Hubbell, S.P. 2001. The Unified Theory of Biodiversity and Biogeography. Princeton University
Press.
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TRENDS in Ecology & Evolution
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where 8 = 2Jv is the fundamental biodiversity number (v is the speciation rate), and ; is the number of species that have / individuals in the sample.

Pr(ny,no,...,ngl0,J) =

This equation shows that the UNTB implies a nontrivial dominance-diversity equilibrium between speciation and extinction.
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Figure 1. Rank-abundance distribution for the total data of
drosophilids in mangrove forests of Santa Catarina Island.



Citation: Warren RJ |, Skelly DK, Schmitz OJ, Bradford MA (2011) Universal Ecological Patterns in College Basketball Communities. PLoS ONE 6(3): e17342.
doi:10.1371/journal.pone.0017342
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Rank abundance by team

Figure 2. Rank abundance of college basketball wins by team. The abundance of wins in college basketball, a result of competition between
teams of unequal abilities, creates the same pattern used by ecologists to infer mechanism from species abundance distributions (SADs). The log,,
abundance of college basketball wins is ranked by team, just as the abundance of individuals is ranked by species for ecological communities. Mean
wins (gray) across 2004 to 2008=95% Cl are given along with random (Normal, =16, o=6) wins (black), and these random and observed patterns
are not significantly different (see text).



Winemiller, K.O., A.S. Flecker & D.J. Hoeinghaus. 2010. Patch dynamics and environmental
heterogeneity in lotic ecosystems. Journal of the North American Benthological Society 29:84-99.
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Winemiller et al. 2010. Journal of the North American Benthological Society 29:84-99.

TasLe 1. Summary of key features of 4 metacommunity models (adapted from Holyoak et al. 2005) and examples of studies
published in [-NABS consistent with the models.

Characteristic Patch dynamics Species sorting Mass effects Neutral
Patch similarity High Low Low High
Interpatch movement Variable® Not specified High Variable
Species similarity Variable Low Low High
Tradeoffs among traits Yes Yes Yes No
Local species composition Variable Constant Constant Variable
Regional species composition Constant Constant Constant Variable
Spatial synchrony Some Not specified High Not specified
Local equilibrium dynamics  No Yes Depends on dispersal  No
rates
J-NABS studies supporting Casas and Langton Palmer et al. 1991 Englund 1991 ?
model 2008 Brunke and Gonser 1999 Matthaei et al. 2000
Suren and Duncan 1999 Gjerlov et al. 2003

Kobayashi and Kagaya 2004 Silver et al. 2004a
Arrington and Winemiller 2006  Tronstad et al. 2007

* According to Townsend (1989), dispersal between patches often can be rapid in stream community patch dynamics, whereas
Holyoak et al. (2005) contend that interpatch movement is relatively low under the patch dynamics metacommunity model.



The patch-dynamics concept of metacommunities

Assumptions:

¢ Tradeoff between colonizing ability and competitiveness
(r strategists vs. K strategists)

e Intermediate disturbance yields highest diversity
(too high, and diversity is reduced)

(too low, and competitive dominants exclude r strategists)



MacArthur, R. & Wilson, E.O. (1967). The Theory of Island Biogeography. Princeton
University Press.

Pianka, E.R. (1970). On r and K selection. American Naturalist 104:592-597.
r strategist -- rapid maturation, small adult size, high reproductive effort, small
investment per progeny, high fecundity => good colonizing ability
(mouse, zebra finch, guppy, diatom)

K strategist -- slow maturation, large adult size, low reproductive effort, large
investment per progeny, low fecundity => good competitive ability

(gorilla, harpy eagle, coelacanth, redwood tree)

Problem — patterns of allocation in nature often do not match this set of predictions.



Fish species with divergent life history strategies
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Winemiller, K.O. and K.A. Rose. 1992. Patterns of life-history diversification in North American fishes:
implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences

49:2196-2218.

A remarkably consistent pattern
of species ordination!
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Life History Model (Winemiller 1989, 1992, Winemiller & Rose 1992, 1993)

>

increasing scale of
spatiotemporal variability
of resources & mortality
factors

increasing resource limitation,
competition & predation

fecundity

opportunistic equilibrium

<«——— increasing environmental disturbance & <¢———
decreasing predictability of spatiotemporal
variability of resources and mortality factors



Winemiller, K.O. 1989. Oecologia 81:225-241.
Winemiller, K.O. and K.A. Rose. 1992. Can. J. Fish. Aq. Sci. 49:2196-2218.

Winemiller, K.O. 2005. . Can. J. Fish. Aq. Sci. 62:872-885.
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Environmental Variation, Life History Strategies, &
Species Interactions:

“The Storage Effect”

Vol. 125. No. 6 The American Naturalist June 1985

COEXISTENCE MEDIATED BY RECRUITMENT FLUCTUATIONS:
A FIELD GUIDE TO THE STORAGE EFFECT

ROBERT R. WARNER AND PETER L. CHESSON

Functional tradeoffs determine species coexistence
via the storage effect

Amy L. Angert*®', Travis E. Huxman®<, Peter Chesson®, and D. Lawrence Venable®

Theoretical Population Biology 58, 211-237 (2000) PB
doi:10.1006/tpbi.2000.1486, available online at http://www.idealibrary.com on IDE % [ I

General Theory of Competitive Coexistence in
Spatially-Varying Environments

Peter Chesson
Section of Evolution and Ecology, University of California, Davis, California 95616
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Miyazono, S., J.N. Aycock, L.E. Miranda, and T.E. Tietjen. 2010. Assemblage patterns of fish
functional groups relative to habitat connectivity and conditions in floodplain lakes.
Ecology of Freshwater Fish 19:578-585.

Long Brake

Robinson
Mclintyre

Blu

2 Mossy w__Pleasant

Macon Sidon
Walker Sixmile
Wasp
Horseshoe
Ole
Townsend Little Eagle

AN .
Yazoo River

10 km

N

Dump

Fig. 1. Map of the spatial distribution of the 17 lakes in the Yazoo
River Basin in Mississippi included in this study.



(Miyazono, S., et al. 2010. Ecology of Freshwater Fish 19:578-585)
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Grime, J.P. 1977. Evidence for the existence of three primary strategies
in plants and its relevance to ecological and evolutionary theory.
American Naturalist 111:1169-1194.

e ruderals
e stress-tolerant
e competitive

Relative importance of disturbance



Southwood, T.R.E. 1988. Tactics, strategies and templets. Oikos 52:3-18.
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Southwood, T.R.E. 1988. Tactics, strategies and templets. Oikos 52:3-18.
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The patch-dynamics concept of metacommunities

Assumptions:

e Tradeoff between colonizing ability and competitiveness
(r strategists vs. K strategists)

¢ Intermediate disturbance yields highest diversity
(too high, and diversity is reduced)
(too low, and competitive dominants exclude r strategists)



Origins of the intermediate disturbance hypothesis

Grime JP (1973) Competition exclusion in herbaceous vegetation. Nature
242:344-347.

Horn, H.S. (1975) Markovian properties of forest succession. In Cody, M.L.
and Diamond, J.M. Ecology and Evolution of Communities. Belknap
Press, Massachusetts, USA. Pp. 196-211.

Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science
199: 1302-1310.

Huston M (1979) A general hypothesis of species diversity. Am Nat
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Paine R, Levin S (1981) Intertidal landscapes: Disturbance and the
dynamics of pattern. Ecol Monogr 5:145-178.
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Intermediate disturbance hypothesis, continued:
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Assembly of Biotic Communities

Diamond, J.M. 1975. Assembly of species communities. Pp. 342-444 in: Ecology
and Evolution of Communities (M.L. Cody and J.M. Diamond, eds.). Belknap Press,
Cambridge, MA.
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Presley, S.J., C.L. Higgins, and M.R. Willig. 2010. A comprehensive framework for
the evaluation of metacommunity structure. Oikos 119: 908-917.

Clements - communities with coincident range boundaries and compositional unity.

VS.

Gleason — idiosyncratic species responses to the environment, with coexistence
resulting from chance similarities in requirements or tolerances.

e Tradeoffs in competitive ability may yield distributions that are more evenly
spaced along environmental gradients than expected by chance.

e Alternatively, strong competition may result in checkerboard patterns produced by
pairs of species with mutually exclusive ranges (Diamond 1975).

e Communities may form nested subsets of increasingly more species-rich
communities, with predictable patterns of species loss associated with variation in
species-specific characteristics (e.g., dispersal ability, habitat specialization,
tolerance to abiotic conditions).



(Presley, et al. 2010. Oikos 119: 908-917)
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Table 1. Common species characteristic of each of the four major fsunal zones and ubiquitous specics common in two or more adjacent
zones (1) of the aquatic environmental gradsent in Tortuguero National Park.
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Diamond, J.M. 1975. Assembly of species communities. Pp. 342-444 in: Ecology
and Evolution of Communities (M.L. Cody and J.M. Diamond, eds.). Belknap Press,
Cambridge, MA.
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Gotelli, N.J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81(9):2606-2621.

Tasre 1. Summary of four co-occurrence indices.

Index

CHECKER
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V ratio

COMBO

Description Number of species
pairs forming per-
fect checkerboard
distributions

Scan matrix rows for
species pairs form-
g checkerboards

Diamond (1975)

Calculation

Source

Theoretical range 0 to R(R — 1)/2

Pattern expected  Observed > simulated
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community

Comments Most readily testable
prediction of Dia-
mond’s (1975) as-
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(R)R — 1)12)

Stone and Roberts
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combinations
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1 to 2%

Observed < simulated

May reflect “forbidden
species combina-

tions™ (Diamond
1975)

Notes: S, = total for row i; R = number of rows (=species) in the matnx; Q = number of sites in which both members

of a species pair are present.
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Cinaruco River, Venezuela




A great diversity of fishes
occurs in littoral-zone habitats with
high structural complexity.

As water level drops, these
habitat patches are repeatedly
colonized then abandoned.



Arrington, D.A., K.O. Winemiller, and C.A. Layman. 2005. Community assembly at
the patch scale in a species rich tropical river. Oecologia 144:157-167.
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We manipulated —
* patch structural complexity while keeping patch size constant
» colonization rate (distance to source habitat)




Results from experiment varying habitat complexity & colonization rate
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Results from experiment varying the amount of time elapsed for
colonization
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Degree of non-random community organization increases over time

P < 0.02

P> 0.2

P> 0.5

Standardized C score
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Interval (days)



Gotelli, N.J. & D.J. McCabe. 2002. Species co-occurrence: a meta-analysis of J.M.
Diamond’s assembly rules model. Ecology 83:2091-2096.
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Koenig, et al. 2011. PNAS 108, Suppl. 1, 4578-4585
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Pausas, J.G. & Verdu, M. 2010. The jungle of methods for evaluating phenotypic and

phylogenetic structure of communities. BioScience 60:614-625

Table 1. Available software for community structure analysis.

Software name Availability (Web address) Use

EcoSim www.garyentsminger.com/ecosim, http://cran.r-project.org/web/packages/picante 1in figure 1

TraitHull www.prickiysoft.org/software/traithull.htmi 2.1 in figure 1

Ape ape.mpl.ird.fr, cran.r-project.org/web/packages/ape 2.2 in figure 1, box 3

PhySig (MatLab scripts) www.biology.ucr.edu/people/faculty/Garland/PHYSIG.html, http://cran.r-project.org/web/ 3.2 in figure 1
packages/picante

BayesTraits www.evolution.reading.ac.uk/BayesTraits.html 3.2 in figure 1

PDAP www.biology.ucr.edu/people/faculty/Garland/PDAPhtmI| 3.2 in figure 1

Phylocom www.phylodiversity.net/phylocom, http://cran.rproject.org/web/packages/picante 3.1 and 3.2 in figure 1, box 3

MatLab scripts Supplementary material in Helmus and colleagues (2007b), http://cran.rproject.org/ 3.1 in figure 1, box 2
web/packages/picante

SpaCoDi www.ulb.ac.be/sciences/bioancel/ohardy/, http://cran.r-project.org/web/packages/picante 3.1 in figure 1, box 2

EcoPhyl www.cbs.umn.edu/cavender/ 3.1 in figure 1, box 2

MatlLab scripts As supplementary material in Helmus and colleagues (2007a) 4 in figure 1

Geiger cran.r-project.org/web/packages/geiger Box 3




Distribution of traits in communities
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Figure 2. Graphical example of (a) phenotypically overdispersed, (b) random, and (c) clustered communities. Each point
represents a species in the morphospace determined by three noncorrelated traits, two quantitative traits (x- and y-axes),

and a qualitative trait (symbol color). Overdispersed communities have the lowest standard deviation of the nearest-neighbor
distance (NNsd), whereas clustered communities have a reduced range of trait values (i.e., reduced trait space occupied the

species, plot c).
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Figure 4. The distribution of trait values within the reduced morphospace by
habitat filtering (from figure 2c) may be random (left) and overdispersed (right;
with lower standard deviation of the nearest-neighbor distance, NNsd). In the
former case only one assembly process (filtering) is acting, whereas in the latter both
filtering and limiting similarity are acting. The polygon indicates the convex hull.
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COMMUNITY ECOLOGY

S. C. Willis - K. O. Winemiller - H. Lopez-Fernandez

Habitat structural complexity and morphological diversity of fish
assemblages in a Neotropical floodplain river
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(Patrick & Swan, 2011)

Regional species pool
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Fic. 1. Hierarchical-filtering model of community as-
sembly. Potential colonists from the regional species pool
must pass through a series of filters (dispersal, water quality
[water character], physical habitat, interspecific interactions)
before they become part of the equilibrium community in an
individual stream reach (modified from Poff 1997).
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Intercontinental comparison of fish ecomorphology: null model
tests of community assembly at the patch scale in rivers
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Species packing with high niche overlap
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Fic. 1. Theoretical models of species distribution in morphological space and the relationships with species richness, showing
original species in morphological space (solid circles), new species added (open circles), niche volume (solid lines), and species
dissimilarities (dashed lines). (a—¢) Under the niche compression model, average similarity among species increases as new species
are added to the assemblage, with total morphological niche volume remaining relatively constant. (d—f) Under the niche expansion
model, average differences among species remain relatively constant as new species are added, and assemblage morphological niche
volume increases as species richness increases.
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TasLe 3. Summary of nonrandom ecomorphological patterns of perciform assemblages within mesohabitats and macrohabitats
of four rivers from temperate and tropical regions.

Nearest-neighbor distance Size of morphospace

Mesohabitat
River and macrohabitat category Packed Overdispersed No difference  Expansion  Greater evenness
Cinaruco
Floodplain lake wood vV Vv
Floodplain lake leaf litter vV Vv
Floodplain lake rocks v Vv
Floodplain lake sand bank vV vV
Channel wood vV vV
Channel leaf litter VvV vV
Channel rocks vV vV
Channel sand bank vV Vv
Tambopata
Floodplain lake leaf litter vV ava
Floodplain lake wood vV vV
Neches
Floodplain lake wood vV ava
Channel rocks vV ava
Floodplain lake leaf litter vV ava
Channel sand bank vV ava
Channel wood VvV vV
Brazos
Channel rocks vV av4
Floodplain lake leaf litter vV ava
Channel sand bank vV ava
Channel wood v vV
Floodplain lake wood vV vV
Number of cases 0 20 11 9

Note: A check mark (1/) indicates support for the pattern.
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TasLe 4. Summary of support for alternative ecomorphological patterns in relation to species richness of perciform assemblages
within mesohabitat patches in tropical and temperate rivers.

Nearest-neighbor distance Size of morphospace

Mesohabitat
River and macrohabitat category Packed Overdispersed No difference Expansion  Greater evenness
Cinaruco
Floodplain lake wood Vv
Floodplain lake leaf litter vV vV
Floodplain lake rocks vV vV vV
Floodplain lake sand bank Vv vV vV
Channel wood vV
Channel leaf litter v vV
Channel rocks vV vV vV
Channel sand bank vV
Tambopata
Floodplain lake leaf litter vV
Floodplain lake wood vV
Neches
Floodplain lake wood vV
Channel rocks vV vV vV
Floodplain lake leaf litter vV
Channel sand bank vV v Vv
Channel wood vV vV
Brazos
Channel rocks vV vV vV
Floodplain lake leaf litter vV vV
Channel sand bank Vv vV
Channel wood vV vV
Floodplain lake wood vV Vv VvV
Number of cases 5 7 19 1 8

Notes: When the regression for mean nearest-neighbor distance (NND) had a statistically lower slope than expected at random,
species packing with high niche overlap is supported (average similarity increases with species richness); if the regression slope has a
significantly higher slope than expected at random, then limiting similarity is supported. When the regression slope of mean
distance to the assemblage centroid (CD) was significantly higher than expected at random, greater species richness was associated
with expansion of assemblage morphospace. Increased evenness of species dispersion within ecomorphological space with
increasing species richness was supported by a negative trend in standard deviation of NND with a regression slope lower than
expected at random. A check mark (\/) indicates support for the pattern.
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Assembly of Biotic Communities:

Convergence (Functional Similarity)

e Species
e Local Assemblages

e Regional Faunas



Reich, P.B., et al. 1997. From tropics to tundra: global convergence in plant

functioning. PNAS,USA 94:13730-13734.

“Despite striking differences in climate, soils & evolutionary history among

diverse biomes ranging from tropical & temperate forests to alpine tundra &
desert, we found similar interspecific relationships among leaf structure &

function & plant growth in all biomes.”
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Convergent Cichlid Fishes

Zambia Venezuela Costa Rica

piscivore

picking
invertivore

digging/sifting
invertivore

macroinvert./
molluscivore

herbivore/

absent
detritivore [ ]




Cichlid fishes in fluviatile habitats show both ecomorphological divergence
(adaptive radiations) & parallel and/or convergent evolution.
(Winemiller et al. 1995, Env. Biol. Fish. 44:235-261).
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Eco-morpho space occupied by fluviatile cichlids in 3 regional
assemblages overlaps broadly.

Morphological Data
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Yet, there is not 100% ecological equivalency between cichlids
from comparable habitats in these 3 tropical regions.
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Biological Journal of the Linnean Society, 2013, 109, 146-164. With 5 figures

Evolutionary convergence in Neotropical cichlids and
Nearctic centrarchids: evidence from morphology, diet,
and stable isotope analysis

CARMEN G. MONTANA* and KIRK O. WINEMILLER
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One-to-one convergence

No analogue

Piscivores
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Trait values

@
Species pool . k"O A" 'I‘:J .*' !
Habitat fiter B W QO A o

Limit to trait B — k— . —A— .

similarity

Within-community trait predictions:
Restricted range
Even neighbor spacing
Platykurtic

Trait frequency
A o A @

Trait value

Fi1G. 1. A hypothesis for assembly effects on within-community trait distribution (following Diaz et al. [1998] and Weiher et al.
[1998]). The strength of the habitat filter and limiting similarity is expected to depend on the identity of the trait in combination
with the particular abiotic conditions at a site. Note that habitat filtering is hypothesized to affect the range of trait values; limiting
similarity will affect the spacing and lead to a platykurtic (that is, flat-topped) distribution.
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Fig. 4. The community-wide range of values for 11 leaf and stem traits at different levels of species richness. Open diamonds
show the observed values for 44 plots; solid squares show the mean of 9999 null model trials at each of the corresponding levels of
species richness. See Table 1 for a description of the traits; note that data have been log-transformed for all except Nyreq, wood
density, and LA:SA.



M. Loreau, et al. 2002. Perspectives & challenges. p. 237-242 in Biodiversity and
Ecosystem Functioning, M. Loreau et al., eds., Oxford University Press.
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Chase, J.M. 2003. Community assembly: when should history matter? Oecologia
136:489-498.
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(Chase, J.M. 2003. Oecologia 136:489-498)

Regional factors

e Size of regional species pool

e Rate of dispersal within region
Local factors

e Primary production

e Rate of disturbance

He tested the influence of factors by comparing macroscopic animals in
ponds in the Midwestern U.S.
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(Mittelbach & Schmeske, 2015, TREE) Reproductive Niche Local
isolation divergence adaptation
(A) Time
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allows coexistence due to niche divergence.
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Freshwater Biology (2012) 57, 1060-1075

doi:10.1111/}.1365-2427.2012.02768.x

Functional diversity and trait-environment relationships of
stream fish assemblages in a large tropical catchment

ALLISON A. PEASE*, ALFONSO A. GONZALEZ-DIAZ*, ROCIO RODILES-HERNANDEZ' AND

KIRK O. WINEMILLER*
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Moquet, N. and M. Loreau. 2003. Community patterns in source-sink metacommunities. American

Naturalist 162:544-557.

P, is the proportion of sites occupied by species i in
community k

a is the proportion of dispersal between communities
(represents the fraction of local reproductive output
that emigrates; a assumed equal for all species)

V, is the number of vacant niches available

S is the number of species in local communities

N is the number of local communities

c; is the reproductive parameter

m, is the mortality rate

I is the immigration function

0 is the probability that a migrant will find a new patch

v, is the probability that a migrant will find a new
community (dispersal success)

r, is the local basic reproductive rate of species i (the ratio
of potential reproductive & mortality rates)

db;
dt
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B is the probability that a
migrant will find a new
patch

Community productivity
was therefore correlated
with both the number of
sites occupied per species
and their local reproductive
rates.
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Jonathan M. Levine! & Janneke HilleRisLambers?

“Our theoretical approach predicts that without niche differences, species differ by several orders of
magnitude in their per capita growth rates, which is sufficient for rapid competitive exclusion.”
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Figure 3 | Niche differences stabilize community dynamics. Two
generations (2006-2007, 2007—2008) of change in the diversity and
composition of communities stabilized by niche differences, versus those in
which the demographic influence of niche differences was removed (n = 10).
Pie charts show the average proportion of total community seed mass
constituted by each focal species in each treatment and year. The grey arcs
show the collective abundances of the seven rarest species. Species’ relative
abundances are not perfectly equal in the initial communities (2006) owing
to differences in seed viability. Colours correspond to genus as in Fig. 2aand
points show mean * s.e.



Metacommunity concepts and invasive species

A great challenge of community ecology is to determine what makes certain
species invasive and certain communities invasible.

Shea, K. & Chesson, P.L. (2002) Community ecology theory as a framework for
biological invasions. Trends in Ecology and Evolution 17, 170-176.



Melbourne, et al. 2007. Invasion in a heterogeneous world: resistance,
coexistence or hostile takeover? Ecology Letters, 10:77-94.
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Figure 2 Hierarchical metacommunity concept of biological invasions. The smallest scale is the interaction neighbourhood. Interaction
neighbourhoods are linked by dispersal to form a local metacommunity. Local metacommunities are linked by dispersal to form a regional
metacommunity. Shown are: the amount of dispersal between smaller-scale units within the scale; the dominant invasion process at the scale;
the scale of spatial heterogeneity important to invasibility and impact; and the propagule pressure exerted on that scale from other units at the
same scale. Small black arrows indicate dispersal of invader and resident species between smaller-scale units within the scale. Large grey
arrows indicate propagule pressure of the invader and resident species. Large grey arrows are equivalent to the small black arrows at the next
largest scale. The amount of dispersal and propagule pressure is relative between scales.
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Invasibility is increased and impact is reduced by both temporal and spatial heterogeneity.
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Invasibility is lower when species richness of the resident community is higher.



Large spatial scales

Data considered £.9. Native richness of site C:
* Shea & Chesson = (3+4+2)/3 = 3 (quadrat mean)
* Davies ef al. = total count of species insite C=7
* Field studies typically measure the total count of spacies
at a site.

Grey = native
Black = invasive

Invasive richness

Native richness

Sites within regions

Shea & Chesson (2002) — differences in  Davies et al. (2005) — environmental
mean environmental conditions between  heterogensity both within and batween
sites drives the positive relationship. sites drives the positive relationship.

Small spatial scales

Mechanism

Invasive richness

Native richnass
Quadrats within sites

NEa & 0N 8 S &4 . 3aree”

At small s, the unit of study (quadrats) is homogensous, and
competitive exclusion occurs. High richness of native species
armors quadrats against invasion by making fewer nichas available
to newly amriving spacies.
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Positive interactions of nonindigenous species: invasional meltdown?

Daniel Simberloff* & Betsy Von Holle

Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996-1610, USA;
*Author for correspondence (e-mail: dsimberloff@utk.edu; fax: +1-423-974-3067)

There is little evidence that interference among introduced species at levels currently observed
significantly impedes further invasions, and synergistic interactions among invaders may well lead to
accelerated impacts on native ecosystems — an invasional ‘meltdown’ process.

Table 1. Numbers of different types of interactions between
introduced species cited in 254 articles in seven journals during
a five-year period (see text).

Interaction Number Nature of interaction

type

- - 10 Disturbance = 6, indirect effects = 3,
pollination = 1

+/0 12 Disturbance = 9, commensalism = 1,
host/parasite and similar
interactions = 2

+/— 156 Predator/prey = 23, phytophagous

insect/plant = 131, other = 2
—/— 12 Competition = 12




Simberloff, D. 1995. Why do introduced species appear to devastate islands more than
mainland areas? Pacific Science 49:87-97.

Observation: island communities have been viewed as more fragile and vulnerable to
invasion

e virtually every kind of damage wrought by invaders on islands has been wrought in
mainland areas

e itis unlikely that by virtue of low species richness alone, islands have less biotic
resistance to invasion

e instead, certain entire groups are more likely to be missing on islands, and these
absences predispose islands to certain invaders and to certain impacts

Parker, .M., et al. 1999. Impact: toward a framework for understanding the ecological
effects of invaders. Biological Invasions 1:3-19.



Sanders, N.J., et al. 2003. Community disassembly by an invasive species. Proceedings of
the National Academy of Sciences, USA 100:2474-2477.
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Fig. 1. A comparison of native ant community organization in intact sample
plots and sample plots invaded by L. humile. The standardized C-score is a
measure of the extent to which species co-occur less frequently than expected
by chance. Larger C-scores indicate less co-occurrence than in randomly as-
sembled communities. The dotted lines represent 1.96 standard deviations,
the approximate level of statistical significance (P < 0.05). *, Statistical differ-
ences in co-occurrence patterns of intact and invaded plots sampled during
the same sampling period (partition test, P < 0.05). Paired symbols indicate
invaded and intact plots sampled during the same survey. @, Invaded plots; O,
uninvaded plots.



Metacommunity concepts and indices of biotic integrity

e reference community (“healthy condition”)
e index transferability
- from one location to another

watersheds with different characteristics
watersheds with different biogeographic histories

- from one time to another

variable periods of time following a natural disturbance and recovery
different years with different climatic conditions



Index of Biotic Integrity — Pioneers

Patrick, R. 1949. A proposed biological measure of stream conditions based on a
survey of Conestoga Basin, Lancaster County, Pennsylvania. Proc. Acad. Nat. Sci.
Philadelphia, 101:277-341.

Patrick, R. 1950. Biological measure of stream conditions. Sewage & Industrial Wastes,
22(7):926-938.

A "healthy" stream is one which has a balance of organisms or in which the biodynamic
cycle is such that conditions are maintained which are capable of supporting a great
variety of organisms. The algae are mostly diatoms and green algae, such as Cladophora
crispata and glomerata, and the insects and fish are represented by a great variety of
species.

Karr, J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6:
21-27.
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Figure 2. A schematic to illustrate the concept of ecological integnity as the integrating
function of wetlands. encompassing both ecosystem structure and processes. In this case
mtegnty 1s shown to include biogeochemical processes that lead to functions such as nitrogen
removal and hydrological processes that lead to the flood control function. and habitat

functions (based on Smuth et. al.. 1995).
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(1.)REGIONAL MODIFICATION AND

CALIBERATION

(2.) SAMPLE COLLECTION AND
DATATABULATION
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Alternative IBlI Metrics

1. Total Number of Species

#native fish species

# salmonid age classes

2. Number of Darter Species

# sculpin species

# benthic insectivore species

# darter and sculpin species

# darter, sculpin, and madtom species

# salmonid juveniles (individuals)

% round-bodied suckers

# sculpins (individuals)

# benthic species

3. Number of Sunfish Species

# cyprinid species

# water column species

# sunfish and trout species

# salmonid species

# headwater species

% headwater species

4. Number of Sucker Species

# adult trout species

# minnow species

# sucker and catfish species

S. Number of Intolerant Species

# sensitive species

# amphibian species

presence of brook trout

% stenothermal cool and cold water species

% of salmonid ind. as brook trout

6. % Green Sunfish

% common carp

% white sucker

% tolerant species

% creek chub

% dace species

% eastern mudminnow

7. % Omnivores

% generalist feeders

% generalists, omnivores, and invertivores

8. % Insectivorous Cyprinids

% Insectivores

% specialized insectivores

# juvenile trout

% Iinsectivorous species

9. % Top Carnivores

% catchable salmonids

% catchable trout

% pioneering species

Density catchable wild trout

10. Number of Individuals (or catch per effort)

Density of individuals

% abundance ofﬁdominant species

Biomass (per m")

11. % Hybrids

% introduced species

% simple lithophills

# simple lithophills species

% native species

% native wild individuals

% silt-intolerant spawners

12. % Diseased Individuals (deformities, eroded
|ﬂns, lesions, and tumors)




Scoring Values

Metric* 5 3 1 0

1. Taxa Richness >80% |80-60% |59-40% | <40%

2. EPT Index >90% |[89-70% |69-50% | <S50%

3. 1Al 0.8-1.0 |0.65-0.79| 0.5-0.64 <05

4. % Dominant Taxon <20% |[20-30% |31-40% | >40%

5. NCBI >85% |[85-70% |69-50%| <50%

6. % Shredders >50% |50-35% |35-20% | <20%

7. Total Habitat Score >90% |[89-75% |74-60% | <59%
Integrity Class Excellent | Good Fair Poor |Very Poor
Scoring Range 60 - 52 50-44 | 42-34 32-26 24-8




biotic index of watershed impairment

Benthic 1Bl

Impervious area (%)



Index of Biotic Integrity — continued:
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Development and validation of an estuarine biotic integrity index. Estuaries
20(3):601-617.

Thorne, R. St. J., and W. P. Williams. 1997. The response of benthic
invertebrates to pollution in developing countries: A multimetric system of
bioassessment. Freshwater Biology 37: 671-686.

Potapova, Marina and Carlisle, D.M. 2011. Development and application of
indices to assess the condition of benthic algal communities in U.S. streams
and rivers. U.S. Geological Survey Open-File Report 2011-1126, 40 pp.
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