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Growth with seasonally varying temperatures: an expansion
of the von Bertalanffy growth model
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The von Bertalanffy growth function has limitations for describing the growth of fishes in
seasonal climates. In the present work, a new equation is proposed where the growth parameter
k is substituted by a function related to monthly water temperatures. The computer program
GROWTH5 was developed to fit and simulate the growth for seasonally varying temperatures.
Examples for natural populations of Barbatula barbatula and Cottus gobio are presented.

? 1996 The Fisheries Society of the British Isles

Key words: seasonal growth; temperature; growth model; Bertalanffy.

INTRODUCTION

Growth, as proposed by von Bertalanffy (1938), is the result of the antagonistic
effects of anabolism and catabolism. Although von Bertalanffy related anabo-
lism exclusively to the surface area and catabolism with animal weight or
volume, there is no doubt that metabolic constants are related to biotic and
abiotic factors. As a first approximation, we can list such factors as the
qualitative and quantitative aspects of food ingestion, population density, and
the influence of temperature, photoperiod and rainfall through production of
growth hormone, migration and gonadal maturation. Even considering animal
growth as a result of several factors, it is clear that temperature has an important
role over growth regulation. Several mathematical models relating temperature
to growth have been proposed (for reviews, see Ricker, 1979; Ahlgren, 1987;
Elliott et al., 1987; Moreau, 1987; Weatherley & Gill, 1987).

THE VON BERTALANFFY GROWTH FORMULA AND TEMPERATURE

The von Bertalanffy growth formula (VBGF) (Bertalanffy, 1938) has been
widely applied in fisheries biology. von Bertalanffy (1938) considered an
organism as an open system where growth was a result of an equilibrium between
synthesis and breakdown of organic compounds; catabolism was proportional to
the weight of the organism while anabolism depended on the surface available
for changing nutrients (definitions of the parameters are summarised in Table I):

Lt=E/k"(E/k"L0) · exp("k · t) (1)

Fax: +55–51–339–1564; email: nfontoura@music.pucrs.br

569

0022–1112/96/040569+16 $18.00/0 ? 1996 The Fisheries Society of the British Isles



where Lt is the length at age t; E is a constant related to anabolism; k is a
constant related to catabolism (the growth coefficient); L0 is the length when
t=0; and t is the age.
The asymptotic length (L£) may be equal to E/k. Transforming L0 to a factor

of time correction (t0) and substituting L£ for E/k:

Lt=L£(1"exp("k · (t"t0))). (2)

Taylor (1958, 1959, 1960) fitted the VBGF to growth data for cod (Gadus
callarias L., Taylor, 1958) and two species of clams (Siliqua patula, Taylor, 1959;
Cardium corbis, Taylor, 1960) at different latitudes. He used exponential
regressions between the constant k and the annual average temperature at each

T I. Parameter definitions

Symbol Definition

a condition factor
A amplitude of the sine function
A1 annual temperature amplitude
A2 semestral temperature amplitude
A3 quadrimestral temperature amplitude
b weight/length isometric index
C1, C2, C3 empirical constants
E constant related to anabolism
Emax maximum anabolism value
Ep anabolism coefficient
F1 empirical function
f1 time factor for annual wave phase correction
f2 time factor for semestral wave phase correction
f3 time factor for quadrimestral wave phase correction
I sample interval
L£ asymptotic length
k constant related to catabolism (von Bertalanffy’s growth coefficient)
kmax maximum reaction rate or catabolism value
kp catabolism coefficient
kt average growth rate
Lest estimated length
Io length when t=0
Lobs observed length
Lt length at age t
N number of samples
t age
to time correction factor related to the size at recruitment
Topt optimum temperature
T temperature
Tm annual average temperature
Tmax upper threshold temperature
Tt estimated average temperature at time t
W£ asymptotic weight
Wt weight at age t
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study site, obtaining high correlation coefficients. As a consequence of Taylor’s
findings, we have:

k=F1(Tm) (3)

where Tm is the annual average temperature; and F1 is an empirical function.
A function relating growth to different constant temperatures was proposed
by Elliott (1975) based on 55 experiments on brown trout Salmo trutta L.
Although this provides a description of growth for any average environmental
temperature, it requires a good record of temperature. Ursin (1963) was the
first to introduce a sinusoidal pattern based on the von Bertalanffy
growth formulae by substituting the catabolism (E) and anabolism (k)
constants by empirical catenary curves, according to Janisch (1927; in Ursin,
1963):

E=Emax(cosh Ep (T"Topt))
"1 (4)

k=kmax(cosh kp (T"Topt))
"1

where Emax is the maximum anabolism value; Ep is an anabolism coefficient; kmax
is the maximum catabolism value; kp is a catabolism coefficient; T is the
temperature; and Topt is the optimum temperature.
Other attempts have been made to describe a growth rate following a seasonal

cycle, all of them including a sine function in the exponent part of the VBGF
(Pitcher & Macdonald, 1973; Cloern & Nichols, 1978; Pauly & David, 1981;
Akamine, 1986). For instance, Pitcher & Macdonald (1973) proposed:

Lt=L£ · (1"exp("k1)) (5)

k1=A · sin(2ð · (t"f )/52)+k(t"t0)

where A is the amplitude of the sine function; and f is the starting point of the
sine function. Although the association between growth parameters and ambi-
ent temperature has been proposed previously (Ursin, 1963; Pitcher &
Macdonald, 1973; Pauly & David, 1981), this is not made explicit as a for-
mal mathematical function including both k/temperature and temperature/time
relationships.

GROWTH WITH SEASONALLY VARYING TEMPERATURES:
A SIMULATION MODEL

The starting point for the model development is to assume seasonal tempera-
ture variation as described by a sine function, which would incorporate one or
more sinusoidal components depending on the required precision:

Tt=Tm +A1 · cos(2ð · (t"f1)) (annual wave) (6)
+A2 · cos(4ð · (t"f2)) (semestral wave)
+A3 · cos(8ð · (t"f3)) (quadrimestral wave)
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where Tt is the estimated average temperature at time t; Tm is the annual average
temperature; A1 is the annual temperature amplitude; A2 is the semestral
temperature amplitude; A3 is the quadrimestral temperature amplitude; f1 is a
time factor for annual wave phase correction; f2 is a time factor for semestral
wave phase correction; f3 is a time factor for quadrimestral wave phase
correction and t is the time. Considering growth as a historical process, that is,
the length or weight of an animal at a moment t is the result of all the conditions
since fertilization, it is useful to transform average monthly temperatures (Tt)
into average temperatures of growth (T):

Solving:

T=1/(t"t0) · (T1"T2) (8)

T1=Tm · t +(A1/2ð) · sin(2ð · (t"f1))
+(A2/4ð) · sin(4ð · (t"f2))
+(A3/8ð) · sin(8ð · (t"f3))

T2=Tm · t0 +(A1/2ð) · sin (2ð · (t0"f1))
+(A2/4ð) · sin(4ð · (t0"f2))
+(A3/8ð) · sin(8ð · (t0"f3)).

By isolating k of the VBGF, it is possible to estimate the average growth rate (kt)
until moment t:

kt=(t0"t)"1 · ln((L£"Lt)/L£) (9)

To relate the average growth rate (kt) to the average temperature of growth (T),
we will choose, as a first approximation, the exponential model proposed by
Taylor (1960):

kt=C1 · exp(C2 · T) (10)

where C1 and C2 are empirical parameters. By combining equations (8) and
(10) with the VBGF, we can describe the growth with seasonally varying
temperatures:

Lt=L£ · (1"exp("kt(t"t0)) (11)

kt=C1 · exp(C2 · T)

T=1/(t"t0) · (T1"T2)

T1=Tm · t +(A1/2ð) · sin(2ð · (t"f1))
+(A2/4ð) · sin(4ð · (t"f2))
+(A3/8ð) · sin(8ð · (t"f3))
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T2=Tm · t0 +(A1/2ð) · sin (2ð · (t0"f1))
+(A2/4ð) · sin(4ð · (t0"f2))
+(A3/8ð) · sin(8ð · (t0"f3)).

where all the parameters have been defined earlier (see Table I). Nevertheless, at
high temperature levels, the exponential model for k/temperature function
describes an ever increasing growth rate, which obviously is not observed.
Considering that almost all the chemical reactions within an organism are
catalysed by enzymes, the starting point for a k/temperature function should
be an equation that could describe the enzyme reaction rate as a function of
environmental temperature. That model should consider the probability of
enzyme/substrate linking and quantify the rate of active enzymes to denatured
ones.
Even in developing a theoretical enzyme model, there remain some problems.

First of all, the enzyme complex of an organism does not show an equal response
to environmental temperatures (Sauer & Haider, 1977; Davison & Davison,
1987). On the other hand, it could be observed within a species or individual that
there is a change in concentrations of isoenzymes of the same function but with
different optimum temperatures depending on the environmental temperature of
acclimation (Lapkin et al., 1983). Temperature influences the passive and active
transport across membranes (Volmer, 1981; Houston & Mearow, 1981, 1982;
Hennessey et al., 1983; Paszewski & Spiewla, 1986; Hansen & Fisahn, 1987) and
this is another important factor to be considered.
Faced with the problems presented here, we consider it improbable to develop

a strictly theoretical model. So, it appears more adequate to use empirical
models where the parameters present some ecological or physiological meaning,
as in the equations proposed by Parker (1974):

kt=kmax · ((T/Topt) · Z
U)C3 (12)

Z=(Tmax"T)/(Tmax"Topt)

U=(Tmax"Topt)/Topt

where kmax is the maximum reaction rate; Tmax is the upper threshold tem-
perature; Topt is the optimum temperature; T is the temperature; and C3 is
an empirical constant. In this case, considering that one of the major charac-
teristics of the proposed model is the possibility of simulating growth, it is
desirable to change the exponential function by Parker’s model since the former
expects an even increase in growth rate with temperature rise (see Table I for
definitions).

Lt=L£ · (1"exp("kt(t"t0)) (13)

kt=kmax · ((T/Topt) · Z
U)C3 (Parker, 1974)

Z=(Tmax"T)/(Topt)

U=(Tmax"Topt)/Topt

T=1/(t"t0) · (T1"T2)
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T1=Tm · t +(A1/2ð) · sin(2ð · (t"f1))
+(A2/4ð) · sin(4ð · (t"f2))
+(A3/8ð) · sin(8ð · (t"f3))

T2=Tm · t0 +(A1/2ð) · sin(2ð · (t0"f1))
+(A2/4ð) · sin(4ð · (t0"f2))
+(A3/8ð) · sin(8ð · (t0"f3)).

The major problem concerning the use of Parker’s formulae instead of the
exponential one is the impossibility of estimating optimum and upper lethal
temperatures from ordinary data, making it necessary to obtain these values
from the literature or specially designed experiments.

SYSTEM GROWTH5: PARAMETER ESTIMATION

For an easy adjustment of the growth model to data from natural populations,
a BASIC system for PC computers was developed (GROWTH5). Copies can be
obtained from the authors. The sine function for monthly average temperatures
is adjusted according to Amaral (1965):

A1=(P1
2+Q1

2)1/2/I
A2=(P2

2+Q2
2)1/2/I

A3=(P3
2+Q3

2)1/2/I
f1=arc tan(Q1/P1)
f2=arc tan(Q1/P1)
f3=arc tan(Q1/P1)
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where I is the sample interval. Preliminary values of the asymptotic length (L£)
are estimated by the Walford (1946) method. The growth constant k and t0 are
estimated by least squares through VBGF linearization:

ln(1"(Lt/L£))="k · t+k · t0. (15)

The parameters of the weight/length relationship are estimated through the
regression of log length on log weight. The asymptotic weight (W£) is obtained
by the application of asymptotic size (L£) on the weight/length relationship.
The residual variance (S2) is calculated as follows:

where N is the number of samples; Lobs is the observed length; and Lest is the
estimated length. For the estimation of the kt/temperature relationship, the
values of kt for each sample are calculated through equation (9). Since weight is
frequently more sensitive to temperature than length, we can substitute Lt of
equation (9) by (Wt/a)

1/b:

kt=(t0"t)"1 · ln((L£"(Wt/a)
1/b)/L£) (17)

where Wt is the weight at age t; a is the condition factor; and b is the
weight/length isometric index. To each value of kt is associated a value of
average temperature of growth (T) obtained through equation (8). The param-
eters C1 and C2 of the exponential kt/temperature relationship equation (10) are
computed through linear regression of log kt on log T. Once Tmax and Topt values
are available, Parker’s model equation (12) for kt/temperature relationship can
be linearized:

ln kt=ln kmax+C3 ln((T/Topt) · Z
U) (18)

where Z and U are defined on equation (12). Since L£ estimates from seasonal
data by means of Ford–Walford plots frequently lead to unreal values and C1,
C2 and C3 calculations are greatly affected by L£ and t0, the solution of the
parameters is not possible using only analytical methods. In this case it is
necessary to check by means of computational routines the values of L£ and t0
that minimize residual variance in the seasonal model. For each L£ and t0
combination, within a biologically acceptable range, the values of C1, C2, C3 and
S2 are recalculated by the program GROWTH5, being chosen as the ones that
produce the best fit.

EXAMPLES AND DISCUSSION

Tables II and III present the parameter estimates of the growth curve
with seasonally varying temperatures for Cottus gobio L. in Bere Stream
and Barbatula barbatula (L.) in Docken’s Water (data from Mann, 1971).
Temperature variation, k/temperature functions, the length and weight growth
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curves, and standardized residuals for C. gobio and B. barbatula are presented
in Figs 1–4.
Analysing the application of the program GROWTH5 on C. gobio and

B. barbatula data, the first aspect to draw attention to is a result of the adjusting
method used to fit the growth curve. Since we relate average growth rate (kt) to
average temperature of growth (T), there is a narrow range of temperature in the
kt/temperature relationship (Figs 1 and 3). The average temperature for growth
(T) concentrates on the average annual temperature with increasing time, so that

T II. Growth curve parameters with
seasonally varying temperatures of Cottus gobio

at Bere stream (Mann, 1971)

Weight/length relationship
a 0·0201
b 2·8057
r 0·9938

von Bertalanffy growth curve parameters
L£ (cm) 7·1210
W£ (g) 4·9468
to (yr) "0·0788
k 1·5746
S2 0·1950

Time/temperature function
Tm () C) 11·7083
A1 () C) 3·3786
A2 () C) 0·4936
A3 () C) 0·4003
f1 (yr) 0·0980
f2 (yr) 0·1350
f3 (yr) 0·3398

Seasonal model with exponential k/temperature
function
C1 0·0913
C2 0·1937
r2 0·9522
L£ (cm) 8·1000
W£ (g) 7·1003
to (yr) "0·2200
S2 0·0049

Seasonal model with Parker’s k/temperature
function
C3 4·4344
kmax 1·4185
Topt (*) 16·0000
Tmax (*) 21·0000
r2 0·9166
L£ (cm) 8·2000
W£ (g) 7·3494
to (yr) "0·2600
S2 0·0070

*Arbitrary value.
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almost all temperature variation is determined by the first months of growth.
Despite this methodological problem, a high coefficient of determination (r2) was
observed for the kt/temperature function (Tables II and III).
A residual analysis (Chatterjee & Price, 1977) should be used to detect data

patterns not predicted by the proposed model by means of plotting standardized
deviations against a dependent or/and independent variable. The introduction of
a temperature component had reduced most of the seasonal residuals (Figs 2, 4).

T III. Growth curve parameters with
seasonally varying temperatures of Barbatula
barbatula at Docken’s Water (Mann, 1971)

Weight/length relationship
a 0·0056
b 3·2353
r 1·0000

von Bertalanffy growth curve parameters
L£ (cm) 11·5375
W£ (g) 15·3404
to (yr) "0·1271
k 0·7805
S2 0·1628

Time/temperature function
Tm () C) 10·1500
A1 () C) 6·5346
A2 () C) 0·3219
A3 () C) 0·7006
f1 (yr) 0·0063
f2 (yr) 0·8669
f3 (yr) 0·3183

Seasonal model with exponential k/temperature
function
C1 0·2149
C2 0·0953
r2 0·9758
L£ (cm) 13·8000
W£ (g) 27·3801
to (yr) "0·0900
S2 0·0140

Seasonal model with Parker’s k/temperature
function
C3 1·5161
kmax 0·8960
Topt (*) 19·0000
Tmax (*) 24·0000
r2 0·9795
L£ (cm) 14·3000
W£ (g) 30·7214
to (yr) "0·1100
S2 0·0099

*Arbitrary value.
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F. 1. (a) Monthly average water temperatures in Bere stream; (b) exponential k/temperature; (c) and
Parker’s k/temperature function for Cottus gobio.
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F. 2. Length–growth curve and standardized residual distribution of Cottus gobio in Bere stream.
(a) Bertalanffy and seasonal growth curves; (b) residuals, Bertalanffy model; (c) residuals, seasonal
model. ., Observed, – – –, Bertalanffy; ——, seasonal.
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F. 3. (a) Monthly average water temperatures at Docken’s Water; (b) exponential k/temperature;
(c) Parker’s k/temperature model for Barbatula Barbatula.
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F. 4. Length–growth curve and standardized residual distribution of Barbatula barbata at Docken’s
Water. (a) Bertalanffy and seasonal growth curves; (b) residuals, Bertalanffy model; (c) residuals,
seasonal model. ., Observed, – – –, Bertalanffy; ——, seasonal.

     581



Nevertheless some seasonal patterns still remain, indicating that temperature is
not the unique ecological factor determining seasonal growth.
A literature analysis clearly shows the existence of two major factors acting

over seasonal growth: photoperiod and temperature (Hogman, 1968; Villarreal
et al., 1981; Thorpe, 1987; Weatherley & Gill, 1987). However, considering that
the average monthly temperatures and the seasonal photoperiod variation follow
both sine curves distant only by a small phase difference, it is difficult to identify
the separate influence of each of these factors on the growth rate. Either of these
factors chosen ‘ a priori ’ will present a strong correlation coefficient due to
collinearity effects. If it is not possible to isolate the individual effect of each
variable, why choose temperature as the major factor acting over growth rate
oscillation? First of all we have to consider two important aspects: (1) although
photoperiod and temperature oscillate seasonally with small phase differences,
photoperiod presents an absolute regularity while temperature shows large
variations; (2) the photoperiod cycle anticipates the temperature cycle with a
small time gap.
This evidence corroborates the idea that photoperiod acts as an early sign for

temperature increase (Villarreal et al., 1988), because: (1) growth processes
depend on protein synthesis; (2) the metabolic processes depend not only on the
chemical kinetics (temperature) but also on enzyme concentrations; (3) growth
hormone acts on protein and RNA synthesis; and (4) there should be a
physiological advantage to start synthesizing enzymes just before average
temperature increases. In this case, photoperiod plays its role in synchronizing
enzyme synthesis with favourable temperatures, but it is the temperature that
governs the reaction rate.
Considering this proposal, how is it possible to account for seasonal growth

rates that are not explained by temperature oscillation? First, it should be
considered that the seasonally varying temperatures do not follow exactly the
same pattern each year. The influence of seasonal rainfall over food availability
and the energy cost for migration and reproduction should not be forgotten
(Moreau, 1987).
Finally, comparing the model for seasonal growth presented here with

previous ones (Ursin, 1963; Pitcher & Macdonald, 1973; Pauly & David, 1981;
Akamine, 1986), three advantages should be mentioned. (1) Although the model
should be considered an empirical function, most of the equation parameters
have a biological meaning. (2) The final function is a result of the composition
of more simple equations, each one related to a specific aspect of the phenomena.
(3) Since the model incorporates real temperature variations, it makes possible
the simulation of growth for different temperature regimes.
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